F15 Mechanical Wave and Resonance

1 Content

- 1.1 Analyze resonant property and frequency of standing wave
- 1.2 Chladni Plates
- 1.3 Bohr atom model
- 1.4 Standing wave of spring
- 1.5 Resonance of metal strip

2 Introduction

2.1 Analyze resonant property and frequency of standing wave

When a string with uniform mass, one side of it is fixed, while the other oscillates up and down regularly, there are waves propagating along it continuously. If particles on the string are vertical to the propagating direction, it is called transverse wave. The highest point of the wave is called peak, and the lowest point is called trough. Distance between each peak or trough is called wavelength λ . If oscillating frequency is f, velocity of wave is V,

$$V=f \lambda \cdots (1)$$

Besides, velocity V, tension Y and mass per length M have the relation:

$$V = \sqrt{\frac{Y}{M}}....(2)$$

$$\therefore f\lambda = \sqrt{\frac{Y}{M}}...(3)$$

$$f = \frac{1}{\lambda} \sqrt{\frac{Y}{M}}...(4)$$

If the length of string and tension are controlled properly, two waves with same amplitude and different direction will form standing wave. Let n be the number of standing wave, namely, half the wavelength, and 1 be the length, then wavelength $\lambda=2\ell$ /n. Substitute this into equation (4), we can get frequency f is:

$$f = \frac{n}{2\ell} \sqrt{\frac{Y}{M}} \tag{5}$$

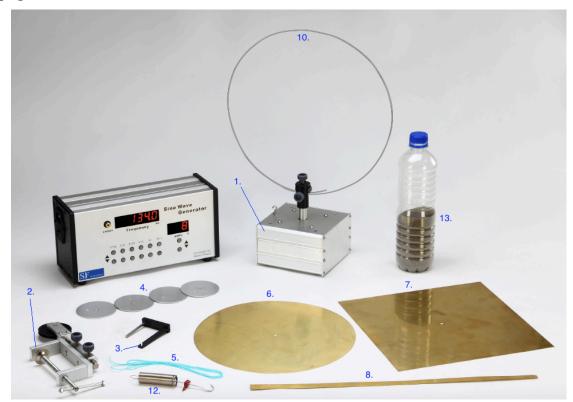
2.2 Chladni Plates

Observing two-dimension standing wave oscillation and graphics of resonance of plates with different shapes is the famous Chladni Plates. The phenomenon and simple procedure of this experiment are often used to illustrate the working principles of drums or violin and so on, which is application to the design and measurement of resonant frequency of these relative musical instruments. Analogous skills can be used to detect density and stress distribution of object's surface and to search defects of object which can not be seen by human eyes. Furthermore, it is also extended to make further understanding of electromagnetic waves propagating in matters, discuss the resonance of electromagnetic waves and understand the effect of boundary conditions of matters for resonance of electromagnetic wave.

2.3 Bohr atom model

In this experiment, we observe standing wave and conditions for resonance of ring. In addition to discussing ring-shaped musical instruments or other phenomenon, principles and applications of resonant system, we can explain simply why the electrons inside an atom have to rotate around the nucleus in a specific orbital radius according to classical mechanics. Furthermore, we can proceed to illustrate the reason why the energy levels of electrons in atoms are discrete, understanding deeply Bohr atom model in quantum mechanics.

2.4 Standing wave of spring

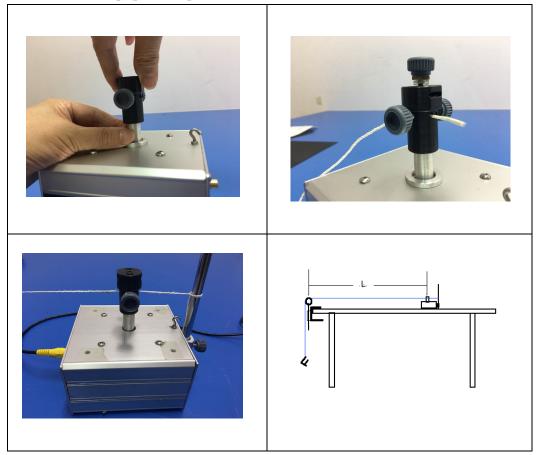

Observing the oscillation of longitudinal wave and resonant phenomenon of spring and discussing the main determinants of resonant frequency, we can understand the wave phenomenon, resonance of acoustic wave and voice mechanism of pipe instruments.

2.5 Resonance of metal strip

Observing the oscillation of transverse wave of metal strip, we can illustrate the standing wave phenomenon of strip-shaped materials and discuss the relation between length of strip and resonant frequency. This experiment can confirm the relation between length of thin cantilever and resonant frequency and wavelength, which is the working principle of strip-shaped sounding bodies such as piano, xylophone, \top

vibraphone and so on. Moreover, the oscillating phenomenon in micro-scale that can't be observed by human eyes and microscope can be realized through this experiment.

3 Equipment


- 3.1 Vibrator x1
- 3.2 Precision pulley with table clamp x1
- 3.3 U-type aluminum hanger x1
- 3.4 Aluminum weight 10g x4
- 3.5 String with different mass x3
- 3.6 Circular metal plate Φ 25cm x1
- 3.7 Square metal plate 25x25cm x1
- 3.8 Metal stripe 40x1cm x1
- 3.9 Metal rod 60cm x1
- 3.10 Circular metal or plastic wire x1
- 3.11 Spring hanger x1
- 3.12 Spring x1
- 3.13 Sands
- 3.14 Options
 - 3.14.1 Sine wave signal generator x1
 - 3.14.2 Violin plate x1

4 Installation, Procedure and Result

4.1 Analyze resonant property and frequency of standing wave

4.1.1 Installation

4.1.1.1 Assemble the equipment up. See figure

Note:

- The vibrator is made by a alum. pole with gum in the center of a loudspeaker. Please use one hand to fix the pole and another hand rotate the plastic fixer into the pole.
- The Sine wave signal generator operation when you keep on push the button the frequency digital will also continue changing until you release your finger.
- 3. The function of "Ampl.", we suggest use range $5\% \sim 40\%$ when working with this louder speaker.

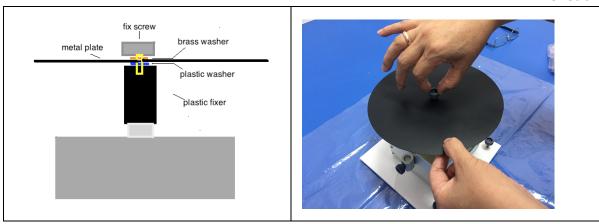
4.1.2 Procedure

- 4.1.2.1 After the installation, fix the pulley on one side and hang weights on it.
- 4.1.2.2 Set the frequency desired to observe and open vibrator.

- 4.1.2.3 Adjust length or mass of weight until it produces obvious standing wave.
- 4.1.2.4 Observe the number of standing wave and measure the mass of weights and the length. Substitute them in the below equation and calculate the oscillating frequency.

$$f = \frac{n}{2\ell} \sqrt{\frac{Y}{M}}$$

4.1.2.5 After getting theoretical value from procedure 4.1.2.4, compare it with the frequency set in 4.1.2.2.


4.1.2.6 Result sample

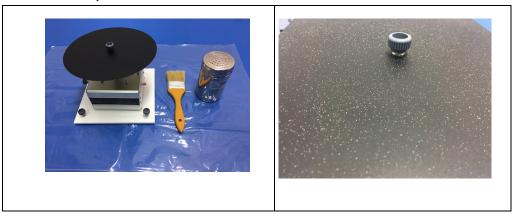
				Tension					
				from					
total	Total			vertical	effective				
string	string	mass per	weight	string +	string length	number of	theoretical	experiment	
length	mass	length (M)	mass	weight	(l/m)	standing	frequency	frequency	error rate
(m)	(kg)	(kg/m)	(kg)	(Y/N)		wave (n)	(Hz)	(Hz)	(%)
2.80	0.00092	0.000329	0.02134	0.20913	0.8	5	78.8	82.2	-4.09%
2.80	0.00092	0.000329	0.02128	0.20854	1.0	5	63.0	66.0	-4.57%
2.80	0.00092	0.000329	0.02121	0.20786	1.2	3	31.4	32.7	-3.85%
2.80	0.00092	0.000329	0.02121	0.20786	1.2	4	41.9	43.7	-4.07%
2.80	0.00092	0.000329	0.02121	0.20786	1.2	5	52.4	54.6	-4.03%
2.80	0.00092	0.000329	0.03136	0.30733	1.2	5	63.7	66.4	-4.04%
2.80	0.00092	0.000329	0.04150	0.40670	1.2	5	73.3	76.6	-4.31%

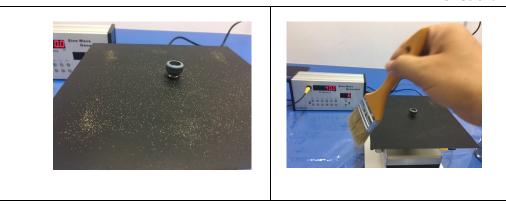
4.2 Chladni Plates

4.2.1 Installation

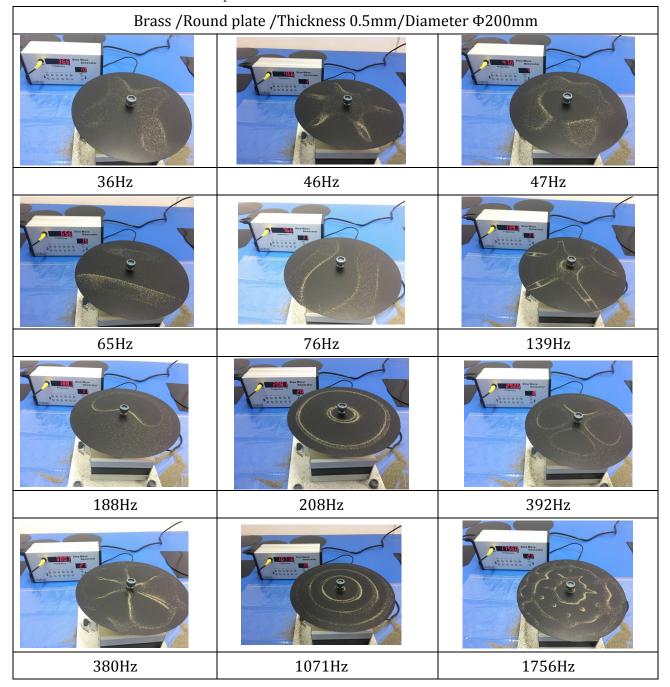
4.2.1.1 Assemble the equipment up. See figure

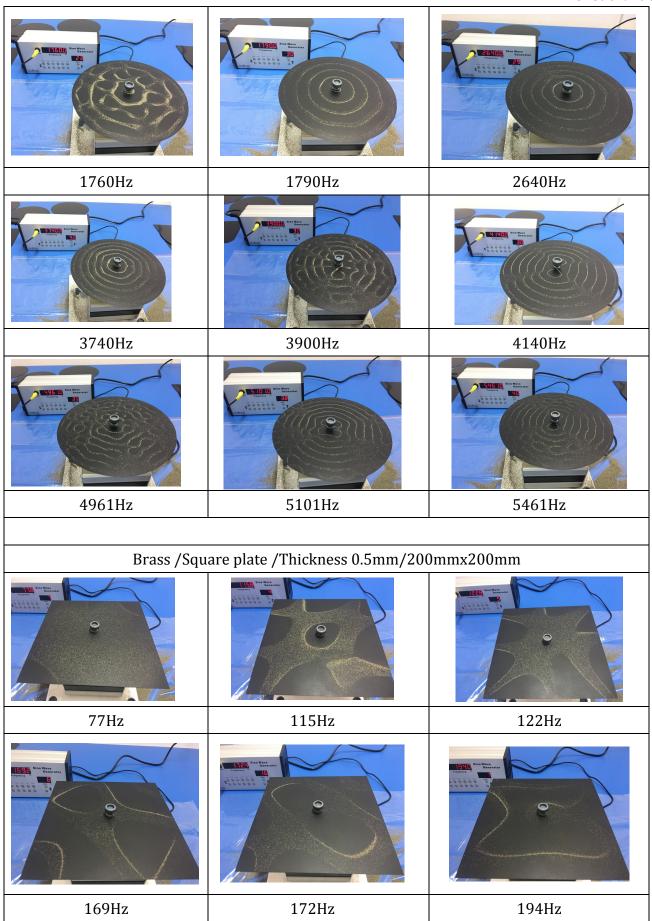
Note:

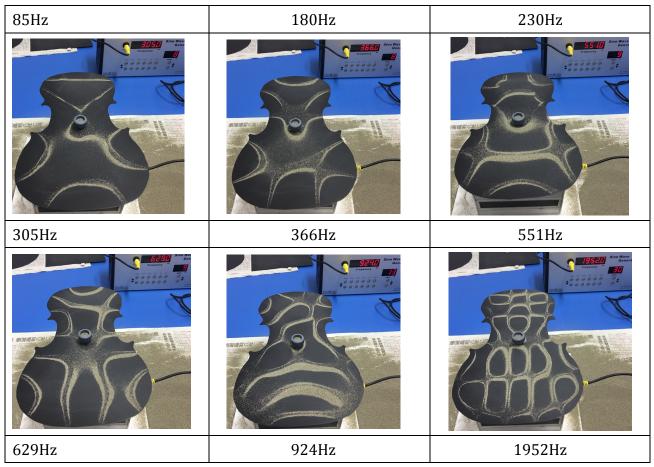

The vibrator is made by a alum. pole with gum in the center of a loudspeaker.


Please use one hand to fix the plate and another hand rotate the plastic screw into

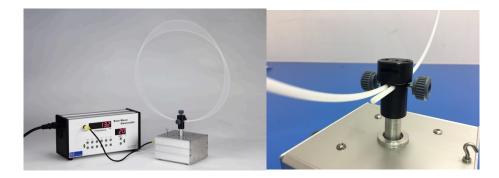
4.2.2 Procedure


the pole.


- 4.2.2.1 After the installation, spread thin sand on the plate.
- 4.2.2.2 Patient to set the frequency and ampl desired to observe and open vibrator.
- 4.2.2.3 If you spread a lot of sand on the plate and it seems not so uniform to make a good picture please clean it by a brush and spread sand again under the resonant frequency.
- 4.2.2.4 Plate made by different material size thickness will have different answer.



4.2.2.4. Sample result:



4.3 Bohr atom model

4.3.1 Installation

4.3.1.1 Assemble the equipment up. See figure.

4.3.2 Procedure

4.3.2.1 After the installation, set the frequency desired to observe and open vibrator.

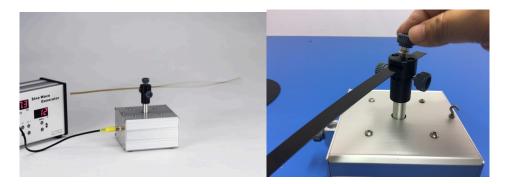
- 4.3.2.2 Observe oscillations under different frequencies with fixed radius.
- 4.3.2.3 Fix the frequency and observe oscillations of metal strips with different radius.

4.4 Standing wave of spring

4.4.1 Installation

4.4.1.1 Assemble the equipment up. See figure (4).

Fig.(4)

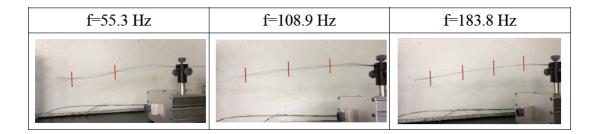

4.4.2 Procedure

- 4.4.2.1 After the installation, set the frequency desired to observe and open vibrator.
- 4.4.2.2 Observe oscillations under different frequencies with fixed length.
- 4.4.2.3 Observe oscillations of different metal strips with fixed frequency.

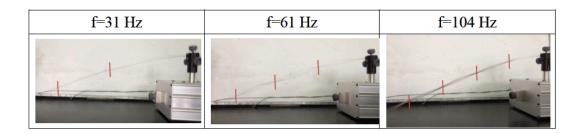
4.5 Resonance of metal strip

4.5.1 Installation

4.5.1.1 Assemble the equipment up. See figure.


4.5.2 Procedure

4.5.2.1 After the installation, set the frequency desired to observe and open vibrator.


- 4.5.2.2 Observe oscillations under different frequencies with fixed length.
- 4.5.2.3 Observe oscillations of different metal strips with fixed frequency.

4.5.3 Result sample

4.5.3.1 Strip length 27.7cm

4.5.3.2 Strip length 36cm

