

# pH LW-C801 Range: 0~14 Resolution: 0.01 · Measure the pH value of solution



# Notes in Using pH Sensor:

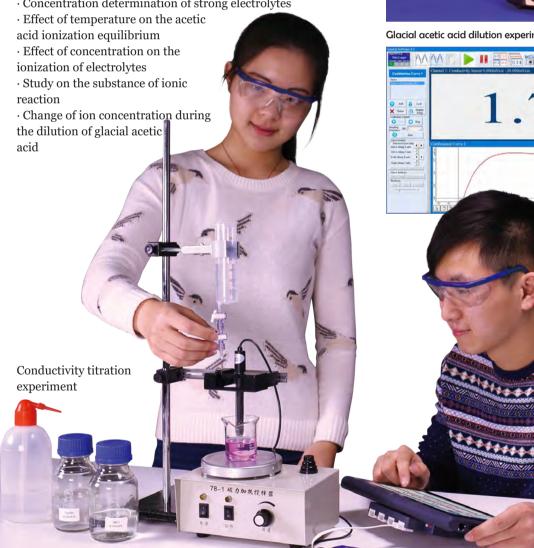
- The glass bulb of front end of electrode shall be immersed in the solution completely;
- Sensor electrode shall be rinsed before and after usage and before measuring different liquids. Cleaning method: wash electrodes with distilled water then gently dry the electrodes with absorbent tissues; No rubbing the electrode to avoid damaging;
- Ensure that there is sufficient activated fluid with ingredient of activated fluid is 3.3mol/L KCl solution, in the sealing cap. Users should fill regularly with self-prepared electrode activated fluid by themselves according to the ingredient.

# **Typical Applications:**

Acid-base neutralization titration (as blow); determination of acetic acid ionization equilibrium constant; simulation of acid rain formation; pH measurement of different drinking water; effect of temperature on the ionization equilibrium of acetic acid; acid rain monitoring.

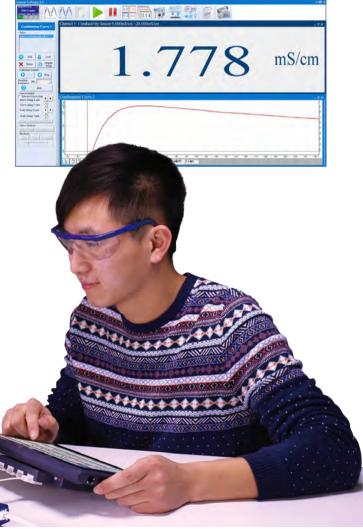





The results of Acid-base Neutralization Titration by using pH sensor






# **Typical Applications:**

- · Solution conductivity measurement
- $\cdot \ Conductivity \ titration$
- · Concentration determination of strong electrolytes





Glacial acetic acid dilution experiment (results as below)



# Chroma

LW-C803 Range: 0~100% Resolution: 0.1%

- · With buildin luminous tube and receiver
- · can distinguish the light transmittance of 3 kinds of
- · light transmittance can be converted absorbency.
- · Assorted with a cuvette



# **Typical Applications:**

- · Determination of a colored solution
- · Determination of the protein content
- · water quality measurement



# Principle of Chroma Sensor:

Pure water is colorless and transparent. However, water would appear a certain color with dissolution of various substances. Chroma of water is the indicator used for color quantitative determination of water or various aqueous solutions. There are two methods in determining solution chroma: The colorimetric method and the dilution method. The unit of both methods is percentage. The transmittance of light penetrating through solutions is determined with the chroma sensor. There are luminescent tube and receiving tube built in the sensor. Between them, there is a cuvette fill d with solution samples. The receiving tube receives the transmission light after penetrating the cuvette and convert it to the transmittance of solution.

# **Turbidity**

LW-C804 Range: ONTU ~ 400NTU Resolution: 0.1NTU

- · NTU means the nephelometric turbidity unit
- · 1NTU means the cloudiness or haziness caused by putting 1mg SiO<sub>2</sub> into 1L of water



# **Typical Applications:**

- · Effect of concentration on chemical reaction rate
- · Water quality test



# Principle of Turbidity Sensor:

Turbidity is the impeding degree of suspended solids in the water to the light penetration. A beam of parallel light is spreading in the transparent liquid. If there are not suspended particles in the liquid, the light beam would spread in the form of straight line and would not change its direction; if there are suspended particles, the light beam would form scattered light (that is the measured value at the 90 degree direction of incident light) when meeting the particles. The more the suspended particles in the solution (the more turbidity), the more fierce the scattering phenomenon is, and the larger the turbidity is. Turbidity unit is inNTU. Scattered light intensity is in direct proportion to the solution turbidity within a certain turbidity range under the condition that incident light is constant. Solution turbidity could be measured following this law.



# **Typical Applications:**

- $\cdot$  Compare the temperature of different parts of alcohol lamp flame
- · Compare the melting temperature of different metals
- · Study on the conductivity of melted KNO<sub>3</sub>

# **Experiment examples:**

- ► Measure and compare melting temperatures of soldering tin, tin and lead etc.
- ▶ Principle: Melting point of soldering tin different from that of fine metal (tin and lead) which constitutes alloy.
- ➤ Apparatus: Data logger; high temperature sensor; copper sheet; soldering tin; tin; lead; alcohol lamp and iron stand .
- ▶ Operation: Put soldering tin, tin and lead on the copper sheet. Then light the alcohol lamp. When soldering tin, tin and lead starting to melt, record the temperatures individually.
- ▶ Notes: Three high temperature sensors could be parallel used to measure the temperatures of three metals individully in order to improve experimental efficiency and reduce operation processes. The experiment shall be carried out in the fuming cupboard since harmful gas will be distributed in melting of tin.



Melting point of soldering tin



Measure the temperature of different parts of alcohol lamp flame, results as below





Measure and compare melting temperatures of soldering tin, tin and lead

# LW-C841 Range: Oppm~20ppm Resolution: 0.01ppm • Measure the SO<sub>2</sub> content in the air









Results of measuring content of  $SO_2$  in cigarette smoke

# **Exepriment Example:**

- ▶ Principle: Rainfall with pH less than 5.65 is called acid rain. Acid rain is mainly caused by a large number of acidic materials, mainly So₂ and tail pipe exhaust that come out of vehicles.
- ► Apparatus: Data Logger,

So<sub>2</sub> sensor, pH sensor, 250mL gas bottles, rubber stoppers, 5mL syringes.

## ▶ Operation:

① Inject prepared So<sub>2</sub> into the 250 mL gas bottle with a 5mL syringe. It can be observed that readings of So<sub>2</sub> increases obviously (graph A on the left);
② Inject distilled water into the same 250 mL gas bottle with the 5 mLsyringe and shake the gas bottle properly. As So<sub>2</sub> is watersoluble, it can be observed



that readings of So<sub>2</sub> decreases obviously (graph B on the left);

③ Pour the solution in the gas bottle into a beaker. Test the pH and you will find that the solution is acidity (graph C on the left).



Measurement of SO<sub>2</sub> contents in cigarette smoke



Measurement of SO<sub>2</sub> contents in the air around power plant

# NH<sub>4</sub><sup>+</sup>

## LW-C834

Range: 0~1mol/L

· Used to measure the NH<sub>4</sub> concentration in solution





Experiment results of measuring the content of NH<sub>4</sub><sup>+</sup> in cfertilizer

# **Typical Applications:**

Concentration testing of  $\mathrm{NH_4}^+$  in the chemical fertilizer; determining of ammonium hydroxide ionization constant; influence of temperature to ammonium hydroxide ionization; determining of ammonium salt solution concentration, etc.



Concentration determination of NH<sub>4</sub><sup>+</sup> in chemical fertilizer



# **Typical Applications:**

- $\cdot$  Messure the  $K^{\scriptscriptstyle +}$  content in vegetable and fruit
- · Measure the  $K^{\scriptscriptstyle +}$  content in the solution,
- $\cdot$  Measure the  $K^{\scriptscriptstyle +}$  content in the cell sap
- · Measure the K<sup>+</sup> content in the chemical fertilizer etc.

Experimental device for measuring potassium ion content in milk (See the right picture)



# NO<sub>3</sub>

### LW-C836

### Range: 0~1mol/L

· Used to measure the NO<sub>3</sub> concentration in solution

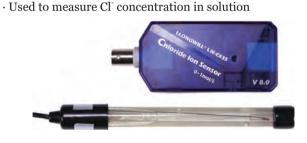




Experiment results of determination of NO<sub>3</sub> concentration in the fruit juice

# **Typical Applications:**

Determination of NO<sub>3</sub><sup>-</sup> concentration in drinking water; food and waste water; changes of NO<sub>3</sub> concentration in the oxidation-reduction reaction.




Determination of NO<sub>3</sub> concentration in the fruit juice

# CI

### LW-C835

### Range: 0~1mol/L





Experiment results of Cl<sup>-</sup> content in table salt.

# **Typical Applications:**

Residual Cl<sup>-</sup> in tap water; testing of AgCl ion product constant; testing of Cl<sup>-</sup> content in blood; testing of Cl<sup>-</sup> content in disinfectant.



Experiment of Cl<sup>-</sup> content in table salt by using chloride ion sensor

# LW-C822 Range: 0~200ppm • Used to measure NO<sub>2</sub> content in gas

# **Typical Applications:**

Testing of  $NO_2$  content in vehicle exhaust and waste gas from power plant; study of acid rain formation by  $NO_2$ ; measurement of  $N_2O_4$  equilibrium constant generated by  $NO_2$ 



Experiment of testing of NO<sub>2</sub> content in vehicle exhaust with NO<sub>2</sub> sensor and digital display module



Experiment results of testing of NO<sub>2</sub> in vehicle exhaust



# **Typical Applications:**

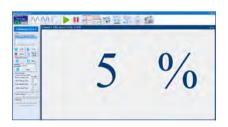
Testing of CO content in cigarette; CO content in air; CO content during candle combustion; study on water solubility of CO.



Experiment of CO content generated during cigarette combustion measured by using CO sensor



Experiment of CO content generated during cigarette combustion

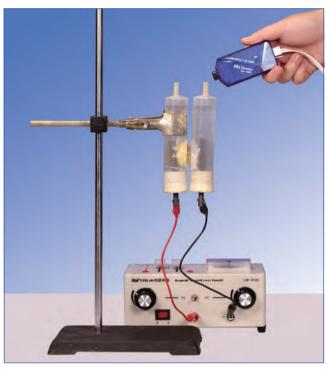

# CH<sub>4</sub> LW-C824 Range: 0~5% • Used to measure CH<sub>4</sub> content in gas

# **Typical Applications:**

Testing of CH<sub>4</sub> content in air; inquiry of reaction condition of CH<sub>4</sub> and Cl<sub>2</sub>; inquiry of CH<sub>4</sub> generation regular in our surroundings; detection of leakage



Detection of gas composition by using CH<sub>4</sub>




Experiment results of detection of gas composition

# H<sub>2</sub> LW-C806 Range: 0~100% LEL · Measure H2 content in air

# **Typical Applications:**

Study on products from the electrolysed water; testing of H<sub>2</sub> content in air; inquiry of gas component in balloon; inquiry of products from metal and hydrochloric acid reaction.



Inquiry experiment of products from electrolysed water by using H<sub>2</sub> sensor

# NH<sub>3</sub> LW-C823 Range: Oppm~100ppm ·Measure NH<sub>3</sub> content

# **Typical Applications:**

Testing of NH<sub>3</sub> content in public toilet; verification of existence of NH<sub>4</sub> in solution by heating it.



Detection of NH<sub>4</sub><sup>+</sup> with NH<sub>3</sub> sensor

# **Expariment Example:**

Inquiry of mixed product of 84 disinfectant and toilet cleaner

- ▶ Principles: Main component of 84 disinfectant is NaClO, while main component of toilet cleaner is HCl. Oxidationreduction reaction may occur in the mixture of 84 disinfectant and toilet cleaner and Cl<sub>2</sub> may be produced. Cl<sub>2</sub> is a poisonous, yellow green gas with strong and pungent smell. It may stimulate eyes and respiratory tract, making people have uncomfortable feelings such as shedding tears and cough.
- ► Apparatus: Cl₂ Sensor, stand support, baker.
- ► Conclusion: 84 disinfectant cannot be used together with toilet cleaner. If mixed unintentionally, open windows immediately for ventilation and move to a place with fresh air quickly.

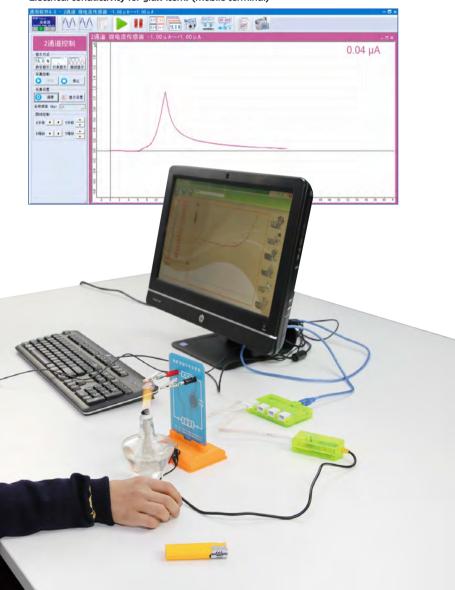


# **Electrical Conductivity for Glass Items**

LW-6328



- •Used to study on the glass conductivity when heated.
- •Used with Micro Current Sensor.




Components:

A. Base, B. Specialized Experiment Board C. Glass (both ends with wire)



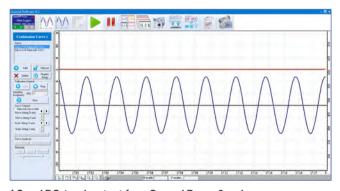
Electrical conductivity for glass items (mobile terminal)



# General Power Supply V2.0

LW-Q708




Input: AC 220V±10% 50Hz

DC Output: 1.5 $V\sim$ 20V continuously adjustable,

rated current 1A

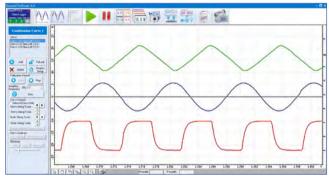
AC Output: oV~9V continuously adjustable, 50Hz,

rated current 1A



AC and DC signals output from General Power Supply

# Low Frequency Signal Generator V2.0


LW-Q710



# **Specifications**

Input Power: AC 220V  $\pm 10\%$  at 0.6A, 50Hz Waveforms: Sine, Square, Triangle. By pressing the Adjuster, select the waveform output orderly.

Frequency Range: DC to 1Hz, AC waveform output retains its form to 2kHZ. By turning the adjuster, adjust the output requency. Voltage Output: O~9V continuously variable by turning the voltage adjuster.



Triangular, Sine and square wave output from Frequency Signal Generator

Utility Model Patent No.: ZL201120057646.5

# **Smart Power Supply V2.0**

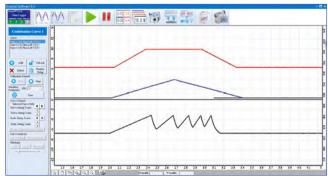
LW-Q820

Smart power supply is the key corollary equipment of Faraday's Law Apparatus  $\Pi$ .

# **Components:** a model shifting

a model shifting switch button, the

ascending and descending slope adjust slider, RUN button, LCD unit, power switch, power output ports and power Jack.


# **Specifications:**

Power: 220V AC at 1A

DC Output: 1.5V~18V, continuously adjustable at 1A AC Output: oV~6V, continuously adjustable at 1A 50Hz

# Waveforms:

1.trapezoidal wave 2.triangle wave 3.multi-periodic triangle wave.

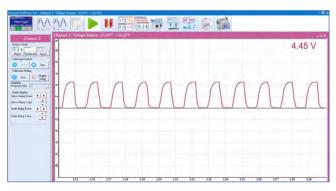



Voltage signals output from Smart Power Supply

# **EXB Series Circuit Board V2.0**

LW-6337

- Including 23 kinds of standardized experiment circuits.
- Used for more than 30 kinds of Electricity experiments.




Experiment results of capacitor charge-discharge & series-parallel (below)





Experiment (above) and its results (below) of Multi-harmonic Oscillation



# **SPECIFICATION**

EXB-01 · Half-wave Rectification & Wave Filtering

EXB-02 · Full-wave Rectification & Wave Filtering

EXB-03 · Analysis of Complex Circuit

EXB-04 · RC & RL Phase Shift

EXB-05 · Measurement of EMF and Internal Resistance of the Battery with Voltammetry

EXB-06 · Measure EMF of the Battery with Compensation Method

EXB-07 · Partial Pressure and CurrentLimited Circuit

EXB-08 · Measure Resistance & Resistivity of the Resistance Wire with Voltammetry

EXB-09 · Diode Characteristic Curve

EXB-10 · Triode Characteristic Curve

EXB-11  $\cdot$  Triode Amplifying Circuit

EXB-12  $\cdot$  Constant Pressure Source

EXB-13  $\cdot$  Constant Current Source

EXB-14 · Bistable Circuit

EXB-15 · Multi-harmonic Oscillation

EXB-16 · Charge-discharge & Series-parallel

EXB-17 · LC Oscillatory Circuit

EXB-18 · Self Inductance

EXB-19 · VA Characteristic Curve of a Miniature Bulb

EXB-20 · AND Gate Circuit

EXB-21 · OR Gate Circuit

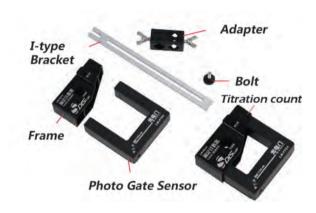
EXB-22 · NOT Gate Circuit

EXB-23 · Ohm's Law

EXB-24 · UI Characteristic of a Conductor

EXB-25 · Series and Parallel Circuits of Resistances

EXB-26 · Study on Conductors and Insulators


EXB-27 · Inductance Module (circuit board accessories)



# **Neutralization Titration Apparatus**

LW-6212

Utility Model Patent No.:ZL200920019408.8



# Operation Instruction:

Before application, put Photo Gate Sensor into Frame , then these two parts make up a titration counter.

During application, adjust the titration counter to make sure there is a effective light blocking when the droplets pass the Photo Gate Sensor.

Open the software automatic record function; input the droplet volume and then record the number of droplets. Therefore the volume of titration can be calculated and the titration process is graphed on the software.

# **Design Concept:**

Neutralization Titration Apparatus is developed based on the light blocking principle of Photo Gate Sensor. Because every droplet has similar volume, therefore the titration volume can be calculated after obtaining the number of the droplets.

Neutralization Titration Apparatus should be used with pH Sensor or Conductivity Sensor.



Use CH₃COOH solution to titrate with NH₃•H₂O solution

Utility Model Patent No.:201320572799.2

# **Dilution Vessel**

LW-Q739



## **Product Structure:**

It looks like upside-down conical beaker, with a small bottom and big open.

Experimental operation using the Dilution Vessel (is shown as image A).

# **Design Concept:**

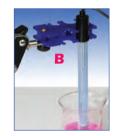
Dilution Vessel is specially designed to research the glacial aceticacid dilution.

Doing this experiment requires to measure the conductivity changes with the sensor during the glacial acetic acid dilution process, therefore the change of the ion concentration can be obtained.



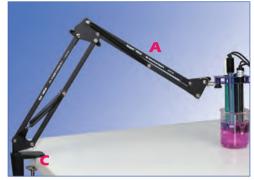


The graph shows the experimental results of the glacial acetic acid dillution


# **Multifunctional Support**

# Composition and Typical Applications:

As shown in the figure on the right, multifunctional support is composed of mechanical arm A, the sensor electrode holder B, and aluminum clip C, The mechanical arm is fixed at the edge of the


experiment table without occupying any table space. It can be folded and expanded. It can be moved flexibly and accurately located in the three-dimensional space with good stability.

The electrode clips are installed at the front end of the arm, whose diameter adapts to the electrodes of various biology and chemistry sensors. The multifunctional support can fix the electrodes of biology and chemistry sensors effectively, which is convenient for the operation of biology and chemistry experiments.



LW-Q731/LW-Q743

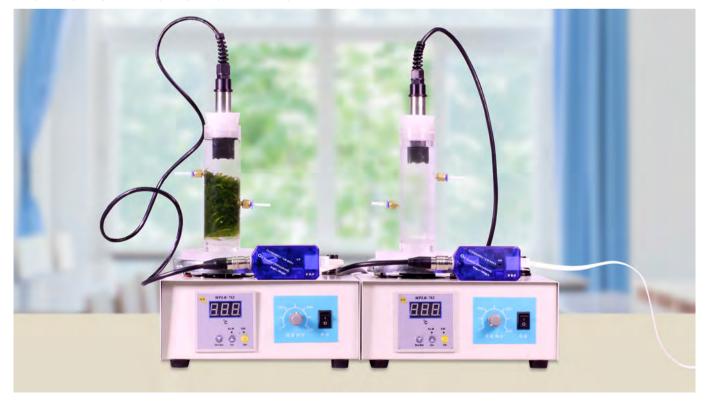
Design Patent No.:ZL201330383519.9 Utility Model Patent No.:201320487473.X



Experiment with multiple sensors using the Multifunctional Support

# ®Pocket Sealing Apparatus

LW-Q716


# Components:

- · Sealing Container
- · Double-pass
- $\cdot \ Double\text{-}pass \ Valves$
- · Sealing Plug

# **Typical Applications:**

- · Study photosynthesis of a single leaf
- · Study capillarity action of plant root Expand more experimental functions according to teaching requirements

Study on the photosynthesis of aquatic plants (as shown below)



# **Sealing Apparatus**

LW-Q749

# **Typical Applications:**

- · Photosynthesis and respiration of terrestrial plants
- $\cdot$  Respiration of animals
- · Seed Germination
- · The characteristics of enzyme
- · Burning characteristics
- $\cdot \, Transpiration \,$



Experiment results of plant photosynthesis

This apparatus can load liquid, plants, other vessels and even some small animals. It creates a relative sealing experiment condition, by which some environment parameter can be controlled.



Study on photosynthesis using sealing apparatus (as shown below)

